2024
Differentiable Uncalibrated Imaging
IEEE Transactions on Computational Imaging, 2024
@article{gupta2022differentiable,
title={Differentiable Uncalibrated Imaging},
author={Gupta, Sidharth and Kothari, Konik and Debarnot, Valentin and Dokmani{\'c}, Ivan},
journal={IEEE Transactions on Computational Imaging},
year={2024},
publisher={IEEE}
}
2023
@article{ctrumpets,
title={Conditional Injective Flows for Bayesian Imaging},
author={AmirEhsan Khorashadizadeh and Konik Kothari and Leonardo Salsi and Ali Aghababaei Harandi and Maarten de Hoop and Ivan Dokmani\'c},
journal={IEEE Transactions on Computational Imaging},
year={2023},
projectpage = {http://sada.dmi.unibas.ch/en/research/injective-flows},
volume={abs/2204.07664},
eprint={2204.07664},
archivePrefix={arXiv},
url={https://ieeexplore.ieee.org/document/10054422}
}
@article{DeepVI,
title={Deep Variational Inverse Scattering},
author={AmirEhsan Khorashadizadeh and Ali Aghababaei and Tin Vlavsi\'c and Hieu Nguyen and Ivan Dokmani\'c},
journal={EUCAP},
year={2023},
projectpage = {http://sada.dmi.unibas.ch/en/research/injective-flows},
volume={abs/2212.04309},
eprint={2212.04309},
archivePrefix={arXiv}
}
@article{khorashadizadeh2022funknn,
title={FunkNN: Neural Interpolation for Functional Generation},
author={Khorashadizadeh, AmirEhsan and Chaman, Anadi and Debarnot, Valentin and Dokmani{\'c}, Ivan},
journal={ICLR},
year={2023},
projectpage = {https://sada.dmi.unibas.ch/en/research/implicit-neural-representation},
volume={abs/2212.14042},
eprint={2212.14042},
archivePrefix={arXiv},
url={https://openreview.net/forum?id=BT4N_v7CLrk}
}
@article{khorashadizadeh2022deepinjective,
title={Deep Injective Prior for Inverse Scattering},
author={AmirEhsan Khorashadizadeh and Vahid Khorashadizadeh and Sepehr Eskandari and Guy A.E. Vandenbosch and Ivan Dokmani{\'c} },
journal={IEEE Transactions on Antennas and Propagation},
year={2023},
projectpage = {http://sada.dmi.unibas.ch/en/research/injective-flows},
volume={abs/2301.03092},
eprint={2301.03092},
archivePrefix={arXiv}
}
2022
@article{puthawala2020globally,
author = {Michael Puthawala and Konik Kothari and Matti Lassas and Ivan Dokmani{\'c} and Maarten de Hoop},
title = {Globally Injective ReLU Networks},
journal = {Journal of Machine Learning Research},
year = {2022},
volume = {23},
number = {105},
pages = {1--55},
url = {http://jmlr.org/papers/v23/21-0282.html}
}
@article{Liu2022learning,
title={Learning multiscale convolutional dictionaries for image reconstruction},
author={Liu, Tianlin and Chaman, Anadi and Belius, David and Dokmani{\'c}, Ivan},
journal={IEEE Transactions on Computational Imaging},
volume={8},
pages={425--437},
year={2022},
publisher={IEEE},
url = {https://ieeexplore.ieee.org/iel7/6745852/9679468/09775596.pdf}
}
@article{KRATSIOS2022,
title = {Learning Sub-Patterns in Piecewise Continuous Functions},
journal = {Neurocomputing},
year = {2022},
issn = {0925-2312},
doi = {https://doi.org/10.1016/j.neucom.2022.01.036},
url = {https://www.sciencedirect.com/science/article/pii/S092523122200056X},
author = {Anastasis Kratsios and Behnoosh Zamanlooy},
}
@inproceedings{kratsios2022universal,
title={Universal Approximation Under Constraints is Possible with Transformers},
author={Kratsios, Anastasis and Zamanlooy, Behnoosh and Ivan, Dokmanic and Tianlin, Liu},
booktitle={(ICLR) The Tenth International Conference on Learning Representations},
year={2022},
url={https://openreview.net/forum?id=JGO8CvG5S9},
note={under review}
}
@article{debarnot2022manifold,
title={Manifold Rewiring for Unlabeled Imaging},
author={Debarnot, Valentin and Kishore, Vinith and Shi, Cheng and Dokmani{\'c}, Ivan},
journal={arXiv preprint arXiv:2209.05168},
year={2022}
}
@article{kratsios2022small,
title={Small Transformers Compute Universal Metric Embeddings},
author={Kratsios, Anastasis and Debarnot, Valentin and Dokmani{\'c}, Ivan},
journal={arXiv preprint arXiv:2209.06788},
year={2022}
}
@article{debarnot2022joint,
title={Joint Cryo-ET Alignment and Reconstruction with Neural Deformation Fields},
author={Debarnot, Valentin and Gupta, Sidharth and Kothari, Konik and Dokmanic, Ivan},
journal={arXiv preprint arXiv:2211.14534},
year={2022}
}
@article{vlavsic2022implicit,
title={Implicit Neural Representation for Mesh-Free Inverse Obstacle Scattering},
author={Vla{\v{s}}i{\'c}, Tin and Nguyen, Hieu and Khorashadizadeh, AmirEhsan and Dokmani{\'c}, Ivan},
journal={56th Asilomar Conference on Signals, Systems, and Computers},
year={2022},
projectpage = {http://sada.dmi.unibas.ch/en/research/injective-flows},
volume={abs/2206.02027},
eprint={2206.02027},
archivePrefix={arXiv}
}
2021
Total least squares phase retrieval
IEEE Transactions on Signal Processing, 2021
@article{gupta2021total,
title={Total least squares phase retrieval},
author={Gupta, Sidharth and Dokmani{\'c}, Ivan},
journal={IEEE Transactions on Signal Processing},
volume={70},
pages={536--549},
year={2021},
publisher={IEEE}
}
@inproceedings{kothari2021trumpets,
title={Trumpets: Injective flows for inference and inverse problems},
projectpage = {http://sada.dmi.unibas.ch/en/research/injective-flows},
author={Kothari, Konik and Khorashadizadeh, AmirEhsan and de Hoop, Maarten and Dokmani{\'c}, Ivan},
booktitle={Uncertainty in Artificial Intelligence},
pages={1269--1278},
year={2021},
organization={PMLR},
url={https://proceedings.mlr.press/v161/kothari21a.html}}
@inproceedings{Chaman_2021_equivariant,
title={Truly shift-equivariant convolutional neural networks with adaptive polyphase upsampling},
author={Chaman, Anadi and Dokmani{\'c}, Ivan},
booktitle={55th Asilomar Conference on Signals, Systems, and Computers},
year={2021},
url = {https://ieeexplore.ieee.org/abstract/document/9723377/}
}
@article{tabaghi2021procrustes,
title={On Procrustes Analysis in Hyperbolic Space},
author={Tabaghi, Puoya and Dokmani{\'c}, Ivan},
journal={arXiv preprint arXiv:2102.03723},
year={2021}
}
@InProceedings{pmlr-v134-kratsios21a,
title = {Optimizing Optimizers: Regret-optimal gradient descent algorithms},
author = {Casgrain, Philippe and Kratsios, Anastasis},
booktitle = {Proceedings of Thirty Fourth Conference on Learning Theory},
pages = {883--926},
year = {2021},
editor = {Belkin, Mikhail and Kpotufe, Samory},
volume = {134},
series = {Proceedings of Machine Learning Research},
month = {15--19 Aug},
publisher = {PMLR},
pdf = {http://proceedings.mlr.press/v134/casgrain21a/casgrain21a.pdf},
url = {https://proceedings.mlr.press/v134/casgrain21a.html},
abstract = {This paper treats the task of designing optimization algorithms as an optimal control problem. Using regret as a metric for an algorithm’s performance, we study the existence, uniqueness and consistency of regret-optimal algorithms. By providing first-order optimality conditions for the control problem, we show that regret-optimal algorithms must satisfy a specific structure in their dynamics which we show is equivalent to performing \emph{dual-preconditioned gradient descent} on the value function generated by its regret. Using these optimal dynamics, we provide bounds on their rates of convergence to solutions of convex optimization problems. Though closed-form optimal dynamics cannot be obtained in general, we present fast numerical methods for approximating them, generating optimization algorithms which directly optimize their long-term regret. These are benchmarked against commonly used optimization algorithms to demonstrate their effectiveness.}
}
@article{kratsios2021universal,
title={Universal Approximation Theorems for Differentiable Geometric Deep Learning},
author={Anastasis Kratsios and Leonie Papon},
year={2021},
eprint={2101.05390},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
@article{pan2021neural,
title={Neural Link Prediction with Walk Pooling},
author={Pan, Liming and Shi, Cheng and Dokmani{\'c}, Ivan},
journal={arXiv preprint arXiv:2110.04375},
year={2021}
}
@inproceedings{Chaman_2021_CVPR,
author = {Chaman, Anadi and Dokmani{\'c}, Ivan},
title = {Truly Shift-Invariant Convolutional Neural Networks},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021},
url = {https://openaccess.thecvf.com/content/CVPR2021/papers/Chaman_Truly_Shift-Invariant_Convolutional_Neural_Networks_CVPR_2021_paper.pdf},
pages = {3773-3783}
}
2020
@inproceedings{kothari2020fionet,
author = {Kothari, Konik and de Hoop, Maarten and Dokmani{\'c}, Ivan},
booktitle = {Advances in Neural Information Processing Systems},
title = {Learning the Geometry of Wave-Based Imaging},
projectpage = {http://sada.dmi.unibas.ch/en/research/imaging-with-waves},
url = {https://proceedings.neurips.cc/paper/2020/file/5e98d23afe19a774d1b2dcbefd5103eb-Paper.pdf},
volume = {33},
year = {2020}
}
Solving complex quadratic systems with full-rank random matrices
IEEE Transactions on Signal Processing, 2020
@article{huang2020solving,
title={Solving complex quadratic systems with full-rank random matrices},
author={Huang, Shuai and Gupta, Sidharth and Dokmani{\'c}, Ivan},
journal={IEEE Transactions on Signal Processing},
volume={68},
pages={4782--4796},
year={2020},
publisher={IEEE}
}
Fast optical system identification by numerical interferometry
ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020
@inproceedings{gupta2020fast,
title={Fast optical system identification by numerical interferometry},
author={Gupta, Sidharth and Gribonval, R{\'e}mi and Daudet, Laurent and Dokmani{\'c}, Ivan},
booktitle={ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={1474--1478},
year={2020},
organization={IEEE}
}
Parsimonious seismic tomography with Poisson Voronoi projections: Methodology and validation
Seismological Research Letters, 2020
@article{fang2020parsimonious,
title={Parsimonious seismic tomography with Poisson Voronoi projections: Methodology and validation},
author={Fang, Hongjian and Van Der Hilst, Robert D and de Hoop, Maarten V and Kothari, Konik and Gupta, Sidharth and Dokmani{\'c}, Ivan},
journal={Seismological Research Letters},
volume={91},
number={1},
pages={343--355},
year={2020},
publisher={Seismological Society of America}
}
Hyperbolic distance matrices
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 2020
@inproceedings{tabaghi2020hyperbolic,
title={Hyperbolic distance matrices},
author={Tabaghi, Puoya and Dokmani{\'c}, Ivan},
booktitle={Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={1728--1738},
year={2020}
}
2019
@inproceedings{kothari2018random,
title={Random mesh projectors for inverse problems},
author={Konik Kothari* and Sidharth Gupta* and Maarten v. de Hoop and Ivan Dokmani{\'c}},
booktitle={International Conference on Learning Representations},
year={2019},
url={https://openreview.net/forum?id=HyGcghRct7},
}
@article{gupta2019don,
title={Don't take it lightly: Phasing optical random projections with unknown operators},
author={Gupta, Sidharth and Gribonval, Remi and Daudet, Laurent and Dokmani{\'c}, Ivan},
projectpage = {http://sada.dmi.unibas.ch/en/research/pr-optical-computing},
journal={(NeurIPS) Advances in Neural Information Processing Systems},
volume={32},
pages={14855--14865},
year={2019}
}
Solving complex quadratic equations with full-rank random Gaussian matrices
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019
@inproceedings{huang2019solving,
title={Solving complex quadratic equations with full-rank random Gaussian matrices},
author={Huang, Shuai* and Gupta, Sidharth* and Dokmani{\'c}, Ivan},
booktitle={ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={5596--5600},
year={2019},
organization={IEEE}
}
On the move: Localization with kinetic Euclidean distance matrices
ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2019
@inproceedings{tabaghi2019move,
title={On the move: Localization with kinetic Euclidean distance matrices},
author={Tabaghi, Puoya and Dokmani{\'c}, Ivan and Vetterli, Martin},
booktitle={ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={4893--4897},
year={2019},
organization={IEEE}
}
Kinetic Euclidean distance matrices
IEEE Transactions on Signal Processing, 2019
@article{tabaghi2019kinetic,
title={Kinetic Euclidean distance matrices},
author={Tabaghi, Puoya and Dokmani{\'c}, Ivan and Vetterli, Martin},
journal={IEEE Transactions on Signal Processing},
volume={68},
pages={452--465},
year={2019},
publisher={IEEE}
}
Permutations unlabeled beyond sampling unknown
IEEE Signal Processing Letters, 2019
@article{dokmanic2019permutations,
title={Permutations unlabeled beyond sampling unknown},
author={Dokmani{\'c}, Ivan},
journal={IEEE Signal Processing Letters},
volume={26},
number={6},
pages={823--827},
year={2019},
publisher={IEEE}
}
@inproceedings{chaman2019multipath,
title={Multipath-enabled private audio with noise},
author={Chaman, Anadi and Liu, Yu-Jeh and Casebeer, Jonah and Dokmani{\'c}, Ivan},
booktitle={ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)},
pages={685--689},
year={2019},
organization={IEEE},
url = {https://ieeexplore.ieee.org/abstract/document/8683045/},
}
2018
@article{huang2018reconstructing,
title={Reconstructing point sets from distance distributions},
author={Huang, Shuai and Dokmani{\'c}, Ivan},
journal={arXiv preprint arXiv:1804.02465},
year={2018}
}