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Problem Set 1 ⋄⋄ MLGGM Spring 2022

Deadline: April 18th 2022

Probability Basics

We recall Markov’s inequality: For a non-negative random variable Y and a ≥ 0, we have

P(Y ≥ a) ≤ E[Y ]

a
. (1)

In the proof of the No-free-lunch theorem, we used the following extension of the Markov’s
Inequality, which we ask you to verify.

Exercise A1 Let Z be a random variable that takes values in [0, 1]. Assume that E[Z] =
µ. Show that for any a ∈ (0, 1),

P[Z > 1− a] ≥ µ− (1− a)

a
.

Hint: Use Markov inequality with suitable substitutions.

We can also derive the Chebyshev’s inequality from the Markov’s Inequality.

Exercise A2 (Chebyshev’s inequality) Let X be a random variable with mean µ and
variance σ2. Show that for any t > 0, we have

P (|X − µ| ≥ t) ≤ σ2

t2
.

Hint: As in the previous exercise, use Markov inequality with suitable substitutions.

Empirical risk minimization

Exercise B1 (Shalev-Shwartz & Ben-David, 2014, Exercise 2.2) Let H be a class of
binary classifiers over a domain X . Let D be an unknown distribution over X , and let
S be a set of training inputs sampled from D. Let f : X → {0, 1} be the ground-truth
labeling function in H. Fix some h ∈ H. The training error of h over S is

L(S,f)(h) :=
1

|S|
∑
x∈S

1(h(x) ̸= f(x)),

and the generalization error of h over D is

L(D,f)(h) := Ex∼D

[
1(h(x) ̸= f(x))

]
.

Show that the expected value of L(S,f)(h) over the random choice of S equals L(D,f)(h),
namely,

E
S∼Dm

[LS(h)] = L(D,f)(h).
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Exercise B2 (Shalev-Shwartz & Ben-David, 2014, Exercise 3.7) Consider a regression
problem, where the input domain X and the target domain Y are both unit intervals on
a real line, i.e., X = Y = [0, 1]. Assume that the distribution D over X is a uniform
distribution. Further, suppose the ground-truth function f : X → Y is an identity
function, that is, f(x) = x for all x ∈ X . Suppose that we want to approximate f from a
hypothesis class H of constant functions with respect to the squared loss l(x, y) = (x−y)2.
Compute the approximation error of the hypothesis class H. That is, compute

inf
h∈H

R(h),

where R(h) = Ex∼D

[(
h(x)− f(x)

)2]
.

Exercise B3 (Shalev-Shwartz & Ben-David, 2014, Exercise 3.7) Given any probability
distribution D over X × {0, 1}, the predicting function

fD(x) =

{
1 if P[Y = 1 | X = x] ≥ 1/2

0 otherwise

is call the Bayes predictor. Show that this predictor is optimal, in the sense that for every
classifier g : X → {0, 1}, we have

LD(fD) ≤ LD(g),

where LD is the generalization error: LD(g) := E(X,Y )∼D[1(g(X) ̸= Y )].

Groups

We recall the definition of a group.

Definition 0.1. Let G be a non-empty set and ⋆ be an operation on G. We say that G
with the operation ⋆ is a group if it satisfies the following conditions:

• Associativity: a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c, for all a, b, c ∈ G;

• Existence of Identity: There exists an element e ∈ G called an identity such that
a ⋆ e = e ⋆ a = a, for all a ∈ G;

• Existence of Inverse: For each a ∈ G, there exists an element b ∈ G such that
a ⋆ b = b ⋆ a = e.

Exercise C1 Consider the following sets with their associated operations. Indicate
which are groups and which are not. For objects that are not groups, specify a condition
(associativity, existence of identity, and existence of inverse) that it violates.

1. Real numberswith addition x ⋆ y = x+ y.

2. Real numbers with multiplication x ⋆ y = x · y.

3. Nonzero real numbers with multiplication x ⋆ y = x · y.
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4. Integers with addition x ⋆ y = x+ y.

5. Integers with subtraction x ⋆ y = x− y.

6. Nonnegative integers with addition x ⋆ y = x+ y.

7. Positive real numbers with the operation x ⋆ y = 2xy.

8. Positive integers with addition x ⋆ y = x+ y.

9. All subsets of a set X with the operation A ⋆ B = A ∪B.

Exercise C2 This is a variation on an example we worked out in class. Consider an
integral operator f : L2(Rd) → L2(Rd) with a kernel Φ, defined as

f(x)(u) =

∫
Rd

Φ(u, v)x(v)dv.

Assume that f is rotation equivariant: for any d-dimensional rotation ρ ∈ SO(d),

f(T (ρ)x) = T (ρ)f(x).

where T acts as
(T (ρ)x) (u) := x

(
ρ−1u

)
. (2)

Derive conditions on the kernel Φ that guarantee this equivariance (assuming all regularity
you need).

Hints

• consider using polar coordinates in Rd;

• consider the case d = 2 first if general d seems abstract.

Exercise C3 (A challenge problem!) Repeat Exercise C2 with the equivariance being
the group of special Euclidean motions of the plane, SE(2), which consists of both trans-
lation in R2 and rotations in SO(2). That is, equivariance should hold for both rotations
and translations.

Exercise C4 (A coding counterpart of Exercise C2 ) Check out the Jupyter notebook
(https://sada.dmi.unibas.ch/download/35/notebook1.ipynb) we uploaded: the sec-
ond example shows benefits of enforcing symmetry in learning when we have prior knowl-
edge that symmetry is present. The example focuses on translation equivariance.
In this exercise we ask you to code something similar, but with the input and output
signals being images on a disc,

Ω =
{
x ∈ R2 : ∥x∥ ≤ 1

}
X (Ω) = L2(Ω)

The exercise is open-ended in the sense that you’re supposed to dig a bit to make it
happen. But here’s a rough blueprint:
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• Discretize the unit disc (make sure to choose an appropriate discretization), and
store the coordinates of the grid points;

• Define some rotation-equivariant linear operator acting on this discretization;

• Generate a training set with, say, random functions; add noise to the “labels” (in
this case also images on the disc);

• “Learn” a generic linear operator using least-squares;

• Do the same but in a class of operators that are constrained to be rotation-invariant

Hint : In polar coordinates rotation invariance becomes identical to periodic translation
invariance from the notebook.

Exercise C5 Let G be a group and g ∈ G. Show that gG = G, where

gG = {gh : h ∈ G}.

(We used this fact to prove that SGf is G-invariant.)

Exercise C6 Recall from the lecture the definition of a G-smoothing operator for a
finite group G,

SGf =
1

|G|
∑
g∈G

f ◦ g and SGF = {SGf : f ∈ F}.

Let Ω = {1, . . . , d}, X (Ω) the set of signals on Ω, G the group of cyclic shifts of Ω and

F = {polyk(x1, . . . , xd)}

the set of degree-k polynomials in d variables. Describe SGF . What if G is the symmetric
group on Ω (the set of all permutations of d elemenets)?

Graphs

Recall that a graph G = (V,E) is a tuple of a vertex set V = {v1, . . . , vn} and an edge
set E. We assume each edge between two vertices vi and vj carries a non-negative weight
wij ≥ 0; if wij = 0 this means that the vertices vi and vj are not connected by an edge.
The weight matrix W ∈ Rn×n of the graph is defined to be a matrix whose (i, j)-th entry
is wij. Additionally, we assume that G is undirected, meaning that wij = wji. The degree
of a vertex vi ∈ V is defined as

di =
n∑

j=1

wij.

The degree matrix D ∈ Rn×n is defined as the diagonal matrix with the degrees d1, . . . , dn
on the diagonal.

Exercise D1 Draw any graph with 5 vertices and at least 10 edges. Compute its weight
matrix W and its degree matrix D.
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Exercise D2 Many properties of a graph can be characterized by its graph Laplacian
matrix, which is defined as

L := D −W .

Let L be the Laplacian matrix of a graph that has n vertices. Show that L satisfies the
following properties:

1. For every vector z = [z1, . . . , zn]
⊤ ∈ Rn we have

z⊤Lz =
1

2

n∑
i,j=1

wij(zi − zj)
2.

2. L is symmetric and positive semi-definite.

5



Machine Learning on Graphs, Groups, and Manifolds. Spring 2022.

References

Shalev-Shwartz, S. and Ben-David, S. Understanding Machine Learning: From Theory to
Algorithms. Cambridge University Press, New York, NY, USA, 2014. (Cited on pages 1

and 2.)

6


