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Imaging through scattering media

e Numerous applications require imaging through scattering

media:

® Reconstructing scenes through fog
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Imaging through tissues in the human body
Detecting patterns, cracks and material properties behind paint
Optical neural network backpropagation

incident laser irradiation
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Imaging through scattering media

e Numerous applications require imaging through scattering
media:

® Reconstructing scenes through fog

Imaging through tissues in the human body

e Detecting patterns, cracks and material properties behind paint
Optical neural network backpropagation

¢ Challenging physical limitations makes imaging in these
scenarios prohibitively time consuming and expensive
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Challenges in the imaging process

Scattering medium  Camera

lllumination

source Measurements
—_ 2 c RM
= Yl
e Output in detection plane, y, is e We can only measure |y|*=|Axz|?

y = Ax with A iid standard

complex Gaussian ¢ Transmission matrix, A, typically

e Get x by simple linear inversion? unknown

Goal: Rapidly learn A
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2. Learn A € CM*N:

Double phase retrieval 12

e Solve M quadratic equations separately,
|(y™)*|* = |E*(a™)*|%, to recover each
row

e 3.3 hours with GPU when A is 2562 x 642

1 Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. |IEEE ICASSP 2016.
2 Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. |EEE Trans. Comp. Imaging 2019.
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The way forward: measurement phase retrieval

1. With K known calibration signals, & ¢ RV*X, measure |Y|* = |AE[?
2. Learn A € CM*¥:

NEW: Measurement phase retrieval

e Recover Y without knowing A 3
e Solve Y = AE torecover A

e 6.2 minutes with CPU when A is
256% x 647
3. Measure |y|> = |Az|* for signal of interest, x
4. Use existing method to recover x from |y|* with learned A

1 Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. IEEE ICASSP 2016.
2 Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. |EEE Trans. Comp. Imaging 2019.

3 One method shown in Gupta S et al. Don'’t take it lightly: Phasing optical random projections with unknown operators. NeurlPS 2019.
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A linear system to recover transmission matrices

e With Y recovered and Z designed, instead of |Y|* = |AZ[*, solve

Y =A== with EeRVE AecCMN Yy MK
e Design = with full row rank and more probe signals, K, than V
e Least-squares fit A = argmin, ||Y — A=|7 = YE!

e Efficient Y=':

® Design E as a concatenation of two circulant N x N matrices,
c RNXQN

E=[E4, Ep]

e Use FFT to efficiently compute YZ' as outlined in our paper



Fast transmission matrix identification

® We compute A € CM*N from real noisy
optical hardware measurements:

1. Imprint signals onto a coherent light
beam

2. Shines them through a multiple
scattering medium, A

3. Medium acts approximately like a
standard iid complex Gaussian matrix

4. 8-bit precision camera captures
scattered light
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Fast transmission matrix identification

® We compute A € C**N from real noisy
optical hardware measurements:

1. Imprint signals onto a coherent light
beam

2. Shines them through a multiple
scattering medium, A

3. Medium acts approximately like a
standard iid complex Gaussian matrix

4. 8-bit precision camera captures
scattered light

e Double phase retrieval: A € CM*¥ with
N =64%*and M /N = 16 took 3.26 hours

Time taken for measurement phase
retrieval and solving Y = AE:

N M/N Time (minutes)

322 32 0.97
322 64 2.05
322 128 4.01
642 16 6.15
642 32 11.69
642 64 24.14
962 16 31.36
1282 12 71.97
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Trilateration to find the phase of a single measurement

e Optical measurement
2
Yio={a,&) " =y €R
is squared distance to origin
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e 4, € C lies on acircle of radius y;q
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between vy, and ry, 7,:

o Y%1 =|y1 —mP€eR
o Y%z =y —m?€R
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Trilateration to find the phase of a single measurement

e Optical measurement
i ={a, &) [P =[n* €R
is squared distance to origin

e letry = 0 and say we know two
other complex numbers r, 7, € C
e 4, € C lies on acircle of radius y;q

e Say we also know the distances
between vy, and ry, 7,:

o v i=ly1—rP€eR Y30
i Y%z = |y1 — 7”2|2 €R

e With r(, 1, 7o and distances
known, we can localize v, and
find the measurement phase



Trilateration to find the phase of a single measurement

Optical measurement Im

v =l(a.&) P =nlPeRr
is squared distance to origin r

Let ro = 0 and say we know two
other complex numbers r, 7, € C Ys
1y, € C lies on a circle of radius y;

Say we also know the distances
between vy, and ry, 7,:
oyl =|yp—m]PeER

Re

o Y%z =y —re? €R

With rg, 71, 72 and distances e Can we measure distances to
known, we can localize v, and known points to perform
find the measurement phase measurement phase retrieval?
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Rapid numerical interferometry

e K known calibration signals: Z = [¢,,...,&] € RV*K
e S > 3 known anchor signals: V = [vy,...,vg] € RV*S
e Foreachrowa € CV of A € CM*N:
e Assume known: e Unknowns: e Measure:
* rs:=(a,v,) €C * yp:=(a,§)eC o v2 = |{(a, &, —vs) 2
® ry:=|ry ® Vi = |yl = [yp — rs/?

Numerical interferometry rather than optical interferometry for signal
interference
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Rapid numerical interferometry

e K known calibration signals: Z = [¢,,...,&] € RV*K
e S > 3 known anchor signals: V = [vy,...,vg] € RV*S
e For each row a € CV of A € CM*N;
e Assume known: e Unknowns: e Measure:
® rgi= <a,,’U3> eC ® Y= <a7€k:> eC d Yis = | <a7£k - Us> |2
® = ‘rs| ® V= ‘I/l\‘ = ’Uk - 7.8‘2
yi, —r? —2rT 1

— | {y A}
T B

(Interpreting complex numbers as vectors in R?)

2 2
Yis — Is




Rapid numerical interferometry

e K known calibration signals: & = [¢,,...,&,] € RV*E
e S > 3 known anchor signals: V = [vy,...,vs] € RV*S
e Foreach row a € CV of A € CM*xN;
e Assume known: e Unknowns: e Measure:
® rgi= <a'7'Us> eC ® Y= <a7£k> eC d Y%S = | <a7£k _2U8> |2
®ry = ‘7's| ® Y= ‘UA‘ = ’l]k - 7.5‘
yh —ni Yien — 11 —2r{ 1
I {:1/1 R
. . . - . . 2 2
. . y1 PR \/A,
Yig—r% o yio—r1s —2rT 1| ————_——
(. / N v W€R3><K

Vv Vv
EERSXK MERSX3
(Interpreting complex numbers as vectors in R?)




Rapid numerical interferometry

e K known calibration signals: & = [¢,,...,&;] € RV*E

e S > 3 known anchor signals: V = [vy,...,vs] € RV*S

e Foreachrowa € CV of A € CM*¥;

¢ Assume known: ¢ Unknowns: e Measure:
® 1, :=(a,vs) €C ® y,:=(a,§,) €C o v =|(a,& —vs)|?
® rsi= sl ® Vi = [yl = |yp — 7|
W_{y; 95} E =MW — W=M'E
yi oo VR ~— N~

RSXK RSx3 R3IXK

Top two rows of W are real and imaginary parts of (a* E) € C*X
Repeat for all rows of A and obtain Y in Y = A= without knowing A!
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Getting initial anchor positions

e For row a of A for all (¢, s) measure squared distances between anchor
points on the complex plane: | (a,v, — v,)|* = |r, — 74|

¢ Find a realization of points on complex plane satisfying distances
® Can be done using multidimensional scaling (MDS)

Im
T

Re
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Experimental verification on optical hardware

e Wirtinger flow algorithm to reconstruct
image, x, from optical measurements,
|Az|, using learned A € CM*N

Original Original Original Original
N =32x32 N = 64 x 64 N =96 x 96 N =128 x 128

uIr
UC UC

Reconstruction Reconstruction Reconstruction Reconstruction
M/N = 128 M/N = 32 M/N = 16 M/N = 12

UT UT U
LUC

10



Experimental verification on optical hardware

e Wirtinger flow algorithm to reconstruct

image, x, from optical measurements, ® Using the FFT method to solve
2 A= . .
|Az|?, using learned A € CM*N Y = AE for A is more efficient
Ny . . - as signal dimension increases
Original Original Original Original
N =32x 32 N = 64 x 64 N = 96 x 96 N =128x128
U—I Scaling with N
=604 = FFT
£ —— No FFT
UC UC o]
Reconstruction Reconstruction Reconstruction Reconstruction S
M/N = 128 M/N = 32 MN =16 M = 12 % 201
UT] L L 2
£
0- T T
C 5000 10000
N

10



Summary
e Numerical interferometery enables rapid measurement phase retrieval

e Learning transmission matrices is a linear problem instead of a
guadratic one with measurement phase retrieval

® 6.2 minutes vs. 3.3 hours

¢ Even with noisy optical measurements, transmission matrices can be
learned and used for imaging

Check out our paper for more details and link to code
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