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Imaging through scattering media

• Numerous applications require imaging through scattering
media:

• Reconstructing scenes through fog

• Imaging through tissues in the human body

• Detecting patterns, cracks and material properties behind paint

• Optical neural network backpropagation

scitechdaily.com

Wieneke S, Gerhard C. Tissue optics and laser–tissue interactions.

• Challenging physical limitations makes imaging in these
scenarios prohibitively time consuming and expensive
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Challenges in the imaging process

Illumination
source

• Output in detection plane, y, is
y = AxwithA iid standard

complex Gaussian

• Get x by simple linear inversion?

• We can only measure |y|2=|Ax|2

• Transmission matrix,A, typically

unknown

Goal: Rapidly learnA

3



Challenges in the imaging process

Illumination
source

x ∈ RN

• Output in detection plane, y, is
y = AxwithA iid standard

complex Gaussian

• Get x by simple linear inversion?

• We can only measure |y|2=|Ax|2

• Transmission matrix,A, typically

unknown

Goal: Rapidly learnA

3



Challenges in the imaging process

Illumination
source

y = Ax
A ∈ CM×N , y ∈ CM

Scattering medium

x ∈ RN

• Output in detection plane, y, is
y = AxwithA iid standard

complex Gaussian

• Get x by simple linear inversion?

• We can only measure |y|2=|Ax|2

• Transmission matrix,A, typically

unknown

Goal: Rapidly learnA

3



Challenges in the imaging process

Camera

|y|2 ∈ RM

Measurements

Illumination
source

y = Ax
A ∈ CM×N , y ∈ CM

Scattering medium

x ∈ RN

• Output in detection plane, y, is
y = AxwithA iid standard

complex Gaussian

• Get x by simple linear inversion?

• We can only measure |y|2=|Ax|2

• Transmission matrix,A, typically

unknown

Goal: Rapidly learnA

3



Challenges in the imaging process

Camera

|y|2 ∈ RM

Measurements

Illumination
source

y = Ax
A ∈ CM×N , y ∈ CM

Scattering medium

x ∈ RN

• Output in detection plane, y, is
y = AxwithA iid standard

complex Gaussian

• Get x by simple linear inversion?

• We can only measure |y|2=|Ax|2

• Transmission matrix,A, typically

unknown

Goal: Rapidly learnA
3



Theway forward

1. With K known calibration signals, Ξ ∈ RN×K , measure |Y |2 = |AΞ|2

2. LearnA ∈ CM×N :

NEW:Measurement phase retrieval

• Recover Y without knowingA 3

• Solve Y = AΞ to recoverA

• 6.2 minutes with CPU whenA is

2562 × 642

3. Measure |y|2 = |Ax|2 for signal of interest, x
4. Use existing method to recover x from |y|2 with learnedA

1 Rajaei B et al. Intensity-only optical compressive imaging using a multiply scattering material and a double phase retrieval approach. IEEE ICASSP 2016.
2 Sharma M et al. Inverse scattering via transmission matrices: Broadband illumination and fast phase retrieval algorithms. IEEE Trans. Comp. Imaging 2019.

3 One method shown in Gupta S et al. Don’t take it lightly: Phasing optical random projections with unknown operators. NeurIPS 2019.
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Theway forward: measurement phase retrieval
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A linear system to recover transmission matrices

• With Y recovered and Ξ designed, instead of |Y |2 = |AΞ|2, solve

Y = AΞ with Ξ ∈ RN×K ,A ∈ CM×N ,Y ∈ CM×K

• Design Ξwith full row rank and more probe signals, K , than N

• Least-squares fit Â = arg minA ‖Y −AΞ‖2F = Y Ξ†

• Efficient Y Ξ†:

• Design Ξ as a concatenation of two circulant N ×N matrices,

Ξ = [ΞA, ΞB] ∈ RN×2N

• Use FFT to efficiently compute Y Ξ† as outlined in our paper
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Fast transmission matrix identification

• We computeA ∈ CM×N from real noisy
optical hardware measurements:

1. Imprint signals onto a coherent light

beam

2. Shines them through a multiple

scattering medium,A
3. Medium acts approximately like a

standard iid complex Gaussian matrix

4. 8-bit precision camera captures

scattered light

• Double phase retrieval: A ∈ CM×N with

N = 642 andM/N = 16 took 3.26 hours
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Fast transmission matrix identification

• We computeA ∈ CM×N from real noisy
optical hardware measurements:

1. Imprint signals onto a coherent light

beam

2. Shines them through a multiple

scattering medium,A
3. Medium acts approximately like a

standard iid complex Gaussian matrix

4. 8-bit precision camera captures

scattered light

• Double phase retrieval: A ∈ CM×N with

N = 642 andM/N = 16 took 3.26 hours

Time taken for measurement phase

retrieval and solving Y = AΞ:

N M/N Time (minutes)

322 32 0.97

322 64 2.05

322 128 4.01

642 16 6.15

642 32 11.69

642 64 24.14

962 16 31.36

1282 12 71.97
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Trilateration to find the phase of a single measurement

• Optical measurement

y210 = | 〈a, ξ1〉 |2 = |y1|2 ∈ R
is squared distance to origin

• Let r0 = 0 and say we know two

other complex numbers r1, r2 ∈ C
• y1 ∈ C lies on a circle of radius y10

• Say we also know the distances
between y1 and r1, r2:

• y211 := |y1 − r1|2 ∈ R
• y212 := |y1 − r2|2 ∈ R

• With r0, r1, r2 and distances
known, we can localize y1 and
find the measurement phase

Im

Re

• Can we measure distances to

known points to perform

measurement phase retrieval?
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Rapid numerical interferometry
• K known calibration signals: Ξ = [ξ1, . . . , ξK ] ∈ RN×K

• S ≥ 3 known anchor signals: V = [v1, . . . ,vS] ∈ RN×S

• For each row a ∈ CN ofA ∈ CM×N :

• Assume known:

• rs := 〈a,vs〉 ∈ C
• rs := |rs|

• Unknowns:

• yk := 〈a, ξk〉 ∈ C
• yk := |yk|

• Measure:

• y2ks := | 〈a, ξk − vs〉 |2
= |yk − rs|2

8
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Numerical interferometry rather than optical interferometry for signal

interference
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y
2
11 − r21 · · · y2K1 − r21
...

...
...

y21S − r2S · · · y2KS − r2S


︸ ︷︷ ︸

E∈RS×K

=

−2rT1 1
...

...

−2rTS 1


︸ ︷︷ ︸

M∈RS×3

[
y1 · · · yK
y21 · · · y2K

]
︸ ︷︷ ︸

W∈R3×K

(Interpreting complex numbers as vectors in R2)
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Rapid numerical interferometry
• K known calibration signals: Ξ = [ξ1, . . . , ξK ] ∈ RN×K

• S ≥ 3 known anchor signals: V = [v1, . . . ,vS] ∈ RN×S

• For each row a ∈ CN ofA ∈ CM×N :

• Assume known:

• rs := 〈a,vs〉 ∈ C
• rs := |rs|

• Unknowns:

• yk := 〈a, ξk〉 ∈ C
• yk := |yk|

• Measure:

• y2ks := | 〈a, ξk − vs〉 |2
= |yk − rs|2

W =

[
y1 · · · yK
y21 · · · y2K

]
E︸︷︷︸

RS×K

= M︸︷︷︸
RS×3

W︸︷︷︸
R3×K

=⇒ Ŵ = M †E

Top two rows of Ŵ are real and imaginary parts of (a∗Ξ) ∈ C1×K

Repeat for all rows ofA and obtain Y in Y = AΞwithout knowingA!
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Getting initial anchor positions

• For row a ofA for all (q, s) measure squared distances between anchor

points on the complex plane: | 〈a,vq − vs〉 |2 = |rq − rs|2

• Find a realization of points on complex plane satisfying distances
• Can be done using multidimensional scaling (MDS)

Im

Re

r1

r2

r3

r0
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Experimental verification on optical hardware

• Wirtinger flow algorithm to reconstruct

image, x, from optical measurements,

|Ax|2, using learnedA ∈ CM×N

Original 
N = 32 x 32

Reconstruction 
M/N = 128

Original 
N = 64 x 64

Reconstruction 
M/N = 32

Original 
N = 96 x 96

Reconstruction 
M/N = 16

Original 
N = 128 x 128

Reconstruction 
M/N = 12
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|Ax|2, using learnedA ∈ CM×N

Original 
N = 32 x 32

Reconstruction 
M/N = 128

Original 
N = 64 x 64

Reconstruction 
M/N = 32

Original 
N = 96 x 96

Reconstruction 
M/N = 16

Original 
N = 128 x 128

Reconstruction 
M/N = 12

• Using the FFT method to solve

Y = AΞ forA is more efficient

as signal dimension increases
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N

0

20

40

60

T
im

e
 t

a
ke

n
 (

m
in

u
te

s)

Scaling with N

FFT
No FFT
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Summary

• Numerical interferometery enables rapid measurement phase retrieval

• Learning transmission matrices is a linear problem instead of a

quadratic one with measurement phase retrieval

• 6.2 minutes vs. 3.3 hours

• Even with noisy optical measurements, transmission matrices can be

learned and used for imaging

Check out our paper for more details and link to code
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